Alternative formulations of the completeness axiom for real and complex numbers

Veröffentlicht am

In this article I will provide some alternative ways to formulate the completeness of real or complex numbers which I have found in the last weeks.

Formulation with epsilon-almost analysis

In my bachelor thesis about \( \epsilon \)-almost analysis I give an alternative completeness axiom for real numbers. It states, that:

Every \( 2\epsilon \)-almost Cauchy sequence converges \( \epsilon \)-almost.

Okay, what the hell are \( 2\epsilon \)-almost Cauchy sequences and \( \epsilon \)-almost convergent sequences? Here are the definitions:

An \( 2\epsilon \)-almost Cauchy sequence is a sequence \( (x_n)_{n\in\N} \) with \( |x_n - x_m| \le 2\epsilon \) for almost all \( n,m \in \N \) which means for all natural numbers \( n \) and \( m \) bigger than an existing \( N \in \N \).

A sequence \( (x_n)_{n\in\N} \) converges \( \epsilon \)-almost, iff there is a \( c \in \R \) and an \( N \in \N \) so that \( |x_n-c|\le\epsilon \) for all natural numbers \( n \ge N \) so iff \( |x_n-c| \le \epsilon \) for almost all \( n\in\N \).

You will find the proof and more informations in my bachelor thesis. Unfortunately it is just available in German yet. Please contact me, if you are interested in an introduction to \( \epsilon \)-almost analysis in German.

Formulation with the Cauchy property of functions

In the article How to proof the convergence of functions without knowing the limit I introduce the concept of functions with the Cauchy property at a special point \( x_0 \). This concept is an extension of the definition for Cauchy sequences to functions. I say that a real or complex valued function \( f : D \rightarrow \K \) with \( D \subset \K \) has the Cauchy property at the point \( x_0 \), iff:

\[ \forall \epsilon > 0\, \exists \delta > 0\, \forall x,y\in D: |x-x_0| < \delta \land |y-x_0|<\delta \Rightarrow |f(x)-f(y)| < \epsilon \]

Thereby \( \K \) shall be now and in the following \( \R \) or \( \C \) dependent whether we consider the completeness axiom for real or complex numbers. As I showed in the article a limit for a function exists for \( x \rightarrow x_0 \), if and only if \( f \) has the Cauchy property at \( x_0 \). So it is:

\[ \begin{array}{c} \lim_{x \rightarrow x_0} f(x) \text{ exists} \\ \Leftrightarrow \\ f \text { has the Cauchy property at } x_0 \end{array} \]

This really looks like the completeness axiom and indeed, it is equivalent to it or better to say the following implication is equivalent to it:

For every function \( f : D \rightarrow \K \) with \( D \subseteq \K \) and every limit point \( x_0 \) of \( \K \) the following implication is true: If \( f \) has the Cauchy property at \( x_0 \), then the limit \( \lim_{x\rightarrow x_0} f(x) \) exists.

Proof: In the article How to proof the convergence of functions without knowing the limit I already gave a proof that the above implication is true in the field of real or complex numbers. So I just have to show, that we can conclude the completeness axiom from the above statement.

Let \( (x_n)_{n\in\N} \) be an arbitrary Cauchy sequence of real or complex numbers. I define \( f : \{ \tfrac 1n | n\in\N \} \rightarrow \K \) with \( f\left(\tfrac 1n\right) := x_n \). Because \( (x_n)_{n\in\N} \) is a Cauchy sequence \( f \) has the Cauchy property at \( x_0 \) and therefore \( \lim_{x\rightarrow 0} f(x) = \lim_{n\rightarrow\infty} f\left(\tfrac 1n\right) = \lim_{n\rightarrow\infty} x_n \) exists.

Kontakt

Wenn du mir Feedback, Anmerkungen oder Korrekturen zukommen lassen willst, dann kannst du mir eine E-Mail an schreiben. Weitere Kontaktmöglichkeiten findest du auf meiner Kontaktseite.

Hinweise zum Artikel

Ähnliche Beiträge

  • How to compare infinite sets of natural numbers, so that proper subsets are also strictly smaller than their supersets

    Veröffentlicht am

    Are there really as many rational numbers as natural numbers? You might answer “Yes” but a better answer would be “It depends on the underlying order relation you use for comparing infinite sets”. In my opinion there really is no reason why we should consider Cantors characterization of cardinality as the only possible one and there is also a total order relation for countable sets where proper subsets are also strictly smaller than their supersets. In this article I want to present you one of them.

  • How to proof the convergence of functions without knowing the limit

    Veröffentlicht am

    How can someone show the existences of a limit without determining its actual value or without even providing a way to constructe the limit? Also imagine that you want to find a direct instead of an indirect proof.

    I found a way by transfering the concept of Cauchy sequences to functions. Are you interested? Read the article!

  • Bachelorarbeit zur ε-ungefähren Analysis

    Veröffentlicht am

    Die „ε-ungefähre Analysis“ ist eine alternative Theorie der Analysis, die ich im Rahmen der Bachelorarbeit in Mathematik entwickelt habe. Das Besondere an ihr: In dieser Theorie ist es möglich auszudrücken, wann zwei Zahlen ungefähr gleich sind. Das erweitert nicht nur das klassische Konzept, welches nur Gleichheit und Nichtgleichheit von Zahlen kennt, sondern bietet auch eine völlig neue Sichtweise auf die Analysis. Konzepte wie Grenzwert, Stetigkeit und Differenzierbarkeit können dann neu und aus meiner Sicht intuitiver formuliert werden.

    Gleichzeitig ist die Theorie nicht schwer zu verstehen und ich habe mich insbesondere darum bemüht, die Bachelorarbeit so zu schreiben, dass die dargestellte Theorie möglichst schnell und einfach verstanden werden kann. Studenten ab dem 2. Semester sollten diese Arbeit ohne große Probleme lesen können.